skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khan, Jawad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Memory capacity is a key bottleneck for training large scale neural networks. IntelĀ® Optane DC PMM (persistent memory modules) which are available as NVDIMMs are a disruptive technology that promises significantly higher read bandwidth than traditional SSDs at a lower cost per bit than traditional DRAM. In this work we show how to take advantage of this new memory technology to minimize the amount of DRAM required without compromising performance significantly. Specifically, we take advantage of the static nature of the underlying computational graphs in deep neural network applications to develop a profile guided optimization based on Integer Linear Programming (ILP) called AutoTM to optimally assign and move live tensors to either DRAM or NVDIMMs. Our approach can replace 50% to 80% of a system's DRAM with PMM while only losing a geometric mean 27.7% performance. This is a significant improvement over first-touch NUMA, which loses 71.9% of performance. The proposed ILP based synchronous scheduling technique also provides 2x performance over using DRAM as a hardware-controlled cache for very large networks. 
    more » « less